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The need for privacy: Genomics

I Rapid increase in generation of new genomic data
I Estimated 228 000 human genomes sequenced by 2014

I The genome is potentially highly sensitive
I Personal and inherently identifiable (Gymrek et al., Science

2013)
I Irrevokable and irreplacable
I Possible leaks affect also relatives and offspring
I Even aggregate data can compromise privacy (Homer et al.,

PLoS Genetics 2008)

I ... yet the information contained within can be very useful for
personalised health care



Why simple methods fail

I We want to study average weight µ of students

I Assume Bob wants to keep his weight private (he is afraid he
might be bullied)

I Privacy mechanism: allow release only for averages of more
than 20 people

I Assume Bob’s weight is x and the total weight of all other 25
students in his class is y

I mean(Bob ∩ class) = x+y
1+25

I Knowing the average weight of the rest of the class

mean(class) =
y

25

would completely destroy Bob’s privacy:

x = (1 + 25)mean(Bob ∩ class)− 25mean(class)



Call for a better solution

We want a privacy framework that

I protects against adversaries with arbitrary side information;

I allows fine-grained control of the level of privacy; and

I composes nicely for use in analysis pipelines.

Differential privacy (DP) gives all this.



Differential privacy (Dwork, 2006)

Definition

An algorithm M operating on a data set D is said to be
(ε, δ)-differentially private ((ε, δ)-DP) if for any two data sets D
and D′, differing only by one sample, the probabilities of obtaining
any result S fulfil

Pr(M(D) ∈ S) ≤ eεPr(M(D′) ∈ S) + δ.

When δ = 0, we get ε-DP, also known as pure DP.



Laplace mechanism (Dwork, 2006)

Theorem

Let
∆f = sup

‖D−D′‖=1
‖f (D)− f (D′)‖1.

If ξ ∼ Lap(0, λ) with λ = ∆f /ε, then M(D) = f (D) + ξ is ε-DP.

Proof.

p(M(D) = c)

p(M(D′) = c)
=

p(Lap(c − f (D); λ))

p(Lap(c − f (D′); λ))

=
exp(‖c − f (D)‖1/λ)

exp(‖c − f (D′)‖1/λ)
≤ exp

(‖f (D)− f (D′)‖1
λ

)

≤ exp

(
∆f

λ

)
= exp(ε)
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Differential privacy and Bob

Let’s apply differential privacy to Bob’s case.

Assuming the weights of each student are in the interval
[30 kg, 60 kg], the sensitivity of the mean over N students,

f (D) =
1

N

N∑

i=1

xi

is ∆f = sup ‖f (D)− f (D′)‖1 = 30/N kg.



Differential privacy and Bob

Applying the Laplace mechanism with
∆f = sup ‖f (D)− f (D′)‖1 = 30/N kg we get:

ε = 1.0,N = 25:

Exact mean: 43.78

Private mean: 43.62 44.19 44.57 45.77 44.52

Mean absolute error: 1.20



Differential privacy and Bob

Applying the Laplace mechanism with
∆f = sup ‖f (D)− f (D′)‖1 = 30/N kg we get:

ε = 10.0,N = 25:

Exact mean: 45.99

Private mean: 46.68 45.93 46.04 45.95 46.15

Mean absolute error: 0.12



Differential privacy and Bob

Applying the Laplace mechanism with
∆f = sup ‖f (D)− f (D′)‖1 = 30/N kg we get:

ε = 0.1,N = 25:

Exact mean: 45.34

Private mean: 35.09 28.66 46.87 54.29 43.25

Mean absolute error: 12.00



Differential privacy and Bob

Applying the Laplace mechanism with
∆f = sup ‖f (D)− f (D′)‖1 = 30/N kg we get:

ε = 0.1,N = 250:

Exact mean: 44.76

Private mean: 44.88 45.28 45.02 41.96 46.46

Mean absolute error: 1.20



Differential privacy and Bob

Applying the Laplace mechanism with
∆f = sup ‖f (D)− f (D′)‖1 = 30/N kg we get:

ε = 1.0,N = 250:

Exact mean: 45.22

Private mean: 45.29 45.23 45.35 45.35 45.23

Mean absolute error: 0.12



Attacking differential privacy

Let us now check the error in estimating the true weight.



Attacking differential privacy

Let us now check the error in estimating the true weight.

ε = 1.0,N = 25:

Exact mean: 43.78

Private mean: 43.62 44.19 44.57 45.77 44.52

Mean absolute error: 1.20

Exact attack error: 0.00

Private attack error: 48.67 44.20 16.36 23.05 24.89

Mean absolute error: 45.04



Attacking differential privacy

Let us now check the error in estimating the true weight.

ε = 10.0,N = 25:

Exact mean: 45.99

Private mean: 46.68 45.93 46.04 45.95 46.15

Mean absolute error: 0.12

Exact attack error: 0.00

Private attack error: 21.25 2.98 0.73 5.16 2.28

Mean absolute error: 4.49



Attacking differential privacy

Let us now check the error in estimating the true weight.

ε = 0.1,N = 25:

Exact mean: 45.34

Private mean: 35.09 28.66 46.87 54.29 43.25

Mean absolute error: 12.00

Exact attack error: 0.00

Private attack error: 17.78 100.22 296.54 882.76 297.45

Mean absolute error: 447.56



Attacking differential privacy

Let us now check the error in estimating the true weight.

ε = 0.1,N = 250:

Exact mean: 44.76

Private mean: 44.88 45.28 45.02 41.96 46.46

Mean absolute error: 1.20

Exact attack error: 0.00

Private attack error: 101.85 1030.99 107.32 961.58 1231.00

Mean absolute error: 450.60



Attacking differential privacy

Let us now check the error in estimating the true weight.

ε = 1.0,N = 250:

Exact mean: 45.22

Private mean: 45.29 45.23 45.35 45.35 45.23

Mean absolute error: 0.12

Exact attack error: 0.00

Private attack error: 1.96 3.16 5.57 68.27 19.89

Mean absolute error: 45.18



Outline

Introduction and differential privacy

Bayesian inference and differential privacy

Differentially private linear regression

Differentially private variational inferece

Differentially private inference on distributed data

Conclusion



Outline

Introduction and differential privacy

Bayesian inference and differential privacy

Differentially private linear regression

Differentially private variational inferece

Differentially private inference on distributed data

Conclusion



Bayesian inference for conjugate exponential models
Consider an exponential family model

p(x | η) = h(x) exp(ηTS(x)− A(η))

with a conjugate prior

p(η | τ, n0) = H(τ, n0) exp(τTη − n0A(η)).

(Examples: binomial, multinomial, Poisson, Gaussian)

Given a sample D = (x1, . . . , xn), the likelihood is

p(D | η) =
∏

i

h(xi ) exp

(
ηT

(∑

i

S(xi )

)
− n A(η)

)
.

Combining the prior and the likelihood yields the posterior

p(η | τ, n0,D) ∝ exp



(
τ +

∑

i

S(xi )

)T

η − (n0 + n)A(η)



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Bayesian inference and mean parameters

It can be shown that the expectation of the mean of the parameter
is

E [µ | τ, n0] =
τ

n0
.

This implies that for the posterior expectation is

E [µ | τ, n0,D] =
τ +

∑
i S(xi )

n + n0
.



Differentially private Bayesian inference

For exponential family models

p(η | D, . . . ) = p(η |
∑

i

S(xi ), . . . ),

i.e. all information about the data D is contained in the sum of
sufficient statistics

∑
i S(xi ).

This suggests a differentially private version where we apply the
Laplace mechanism on the sum to obtain perturbed sufficient
statistics

M(D) =
∑

i

S(xi ) + ξ,

with ξ ∼ Lap(∆S/ε), and then proceed with the inference as usual
(Foulds et al., UAI 2016; Honkela et al., 2016).



Consistency and efficiency

I Consistency: DP estimates of posterior mean parameters
converge to the corresponding non-private values as n→∞

θ̂M =
τ +M(D)

n + n0
=
τ +

∑
i S(xi ) + ξ

n + n0

=
τ +

∑
i S(xi )

n + n0
+

ξ

n + n0
p→ τ +

∑
i S(xi )

n + n0
= θ̂NP .

I Convergence rate O(1/n) is optimal for any DP mechanism,
i.e. sufficient statistic perturbation is asymptotically efficient
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Differentially private linear regression (Mrinal Das)

I Setting: inputs xi ∈ Rd , prediction targets yi ∈ R
I Linear regression model:

yi |xi ∼ N(xTi β, λ)

β ∼ N(0, λ0I )

I Privacy requirement: the inferred parameters β should be
differentially private with respect to the data xi , yi



Bayesian linear regression and DP

yi |xi ∼ N(xTi β, λ)

I Gaussian distribution, an exponential family
I Sufficient statistics: mean and covariance

I Specifically E[xiyi ] and E[xixTi ]

I Fixed size, does not depend on number of samples

I DP inference: perturb E[xiyi ] with Laplace and E[xix
T
i ] with

Wishart noise, then perform inference as usual



Efficient DP learning in practice

I Asymptotic efficiency is insufficient to guarantee practical
efficiency

I High dimensional data needs more DP noise
I More aggressive dimensionality reduction than usual often

needed

I Further: a single outlier can impose huge bounds on the data
I Need to inject a lot of noise in DP to mask it
I The useful contribution such points have in learning is at best

minimal



Clipping in action



The effect of decreasing Bx ,By
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DP linear regression for drug sensitivity prediction

I Task: predict the sensitivity of cell lines to a cancer drug
using gene expression data

I Data: Genomics of Drug Sensitivity in Cancer (GDSC) project
gene expression data and sensitivity to 124 drugs

I Evaluation: rank correlation of predictions over cell lines

I Dimensionality reduction: use prior knowledge to select 65
most important cancer genes, ranked by observed number of
mutations in an unrelated data set



DP linear regression for drug sensitivity prediction
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DP for non-exponential-family models

I Sufficient statistic perturbation is efficient, but only applicable
to exponential family models

I MCMC inference applicable to more general models, but
current DP variants (Dimitrakakis et al., ALT 2014; Wang et
al., ICML 2015) are inefficient and cumbersome

I Require model-specific sensitivity derivations
I Privacy guarantee conditional on convergence
I Privacy cost linear in the number of samples drawn

I Variational inference offers a promising generic alternative



Variational inference

I True posterior p(θ|x) is approximated with a variational
distribution qξ(θ) that has a simpler form

I Optimal approximation obtained through minimising the
Kullback–Leibler (KL) divergence between qξ(θ) and p(θ|x)

I Equivalently, maximising the evidence lower bound (ELBO)

L(qξ) = Eqξ(θ)

[
ln

(
p(x,θ)

qξ(θ)

)]

=
N∑

i=1

(
− 1

N
KL(qξ(θ) || p(θ)) + Eq [ln p(xi |θ)]

)

≡
N∑

i=1

Li (qξ)



Doubly stochastic variational inference

I Modern approach to gradient-based inference

I Transform ∇Eq[. . . ] to Eq[∇ . . . ]
I Use Monte Carlo to evaluate the expectation

I Optimise using stochastic gradient optimisation



DP variational inference (Joonas Jälkö and Onur Dikmen)

I Each g(xi ) = ∇ξLi (qξ) is clipped s.t. ||g(xi )||2 ≤ ct in order
to calculate gradient sensitivity

I Subsampling with frequency q in order to use the privacy
amplification theorem

I Gradient contributions from all data samples in the mini batch
are summed and perturbed with Gaussian noise N (0, 4c2t σ

2
δ I)

I Total privacy cost can be computed from composition
theorems



DP logistic regression results on UCI Abalone
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DP logistic regression results on UCI Adult
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DP and distributed data
(Mikko Heikkilä, Yusuke Okimoto and Kana Shimizu)

I Previous methods assume a trusted aggregator has access to
all data, limiting their applicability

I Naive distributed approach needs to add noise proportional to
the size of each local data set

I Secure multi-party computation with homomorphic encryption
can be used to securely combine distributed data sets

I The Gaussian mechanism allows easy distributed generation of
DP noise



System diagram for distributed DP inference
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Penalty for distributed inference
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Linear regression results on UCI Wine Quality (white)
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Linear regression results on UCI Wine Quality (white)
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Conclusion

I DP as a strong privacy framework

I DP Bayesian inference through perturbing the sufficient
statistics S(xi )

I Asymptotically consistent and efficient

I For finite data: dimensionality reduction and clipping the data
are essential to obtain better performance

I DP variational inference for more general models

I DP inference with distributed data
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J. Jälkö, O. Dikmen, A. Honkela.
Differentially Private Variational Inference for Non-conjugate
Models
arXiv:1610.08749 [stat.ML]
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Privacy in machine learning
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